This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STUDIES OF MIXED LIGAND COMPLEXES FROM DIALKYLDITHIOPHOSPHATE AND THIOSEMICARBAZIDE OR THIOSEMICARBAZONES WITH NICKEL(II)

Amna S. A. Zidan^a; Asma I. El-Said^a Assiut University, Assiut, Egypt

Online publication date: 16 August 2010

To cite this Article Zidan, Amna S. A. and El-Said, Asma I.(2004) 'STUDIES OF MIXED LIGAND COMPLEXES FROM DIALKYLDITHIOPHOSPHATE AND THIOSEMICARBAZIDE OR THIOSEMICARBAZONES WITH NICKEL(II)', Phosphorus, Sulfur, and Silicon and the Related Elements, 179: 7, 1293 — 1305

To link to this Article: DOI: 10.1080/10426500490468100 URL: http://dx.doi.org/10.1080/10426500490468100

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 179:1293-1305, 2004

Copyright © Taylor & Francis Inc.

ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500490468100

STUDIES OF MIXED LIGAND COMPLEXES FROM DIALKYLDITHIOPHOSPHATE AND THIOSEMICARBAZIDE OR THIOSEMICARBAZONES WITH NICKEL(II)

Amna S. A. Zidan and Asma I. El-Said Assiut University, Assiut, Egypt

(Received September 4, 2003; accepted November 7, 2003)

The complexes $[Ni\{(RO)_2PS_2\}_2Tsc]$, $[Ni\{(RO)_2PS_2\}_2ApTsc]$, and $[Ni\{(RO)_2PS_2\}_FurTsc.2H_2O]$ where R= methyl (Me), ethyl (Et) or propyl (Prop); Tsc= thiosemicarbazide, ApTsc= 2-acetylpyridinethiosemicarbazone, and FurTsc= furfuraldhydethiosemicarbazone have been synthesized and characterized by elemental analysis, conductance measurements, and spectral studies (IR, UV-Vis, and mass). Thermal studies of the complexes have been carried out using TG and DTG techniques. An octahedral structure has been proposed for all types of the complexes. A representative types of the complexes are tested against various pathogenic bacteria and fungi. The $[Ni\{(EtO)_2PS_2\}_2ApTsc]$ shows a high degree of activity against bacteria and fungi; this may be attributed to the pyridyl ring of the 2-acetylpyridinethiosemicarbazone ligand.

Keywords: Dithiophosphate; nickel(II) complexes; thermal behavior; thiosemicarbazide; thiosemicarbazones

Thiosemicarbazide and thiosemicarbazones have attracted special attention due to their biological activities.^{1–4} These compounds present a wide variety of biological activity such as antitumoral,^{5–8} fungicidal,^{9,10} bactericidal,¹¹ and antiviral.⁷ It is known that some drugs have increased activity when administered in the form of the metal complexes,^{12,13} and a number of metal chelates inhibit tumor growth.¹⁴ In the treatment of cancer, the active species is not the thiosemicarbazone but its metal chelates.¹⁴ Chemically, heterocyclic thiosemicarbazones are of interest because of their great versatility as ligands, which derives from the presence of several potential donor atoms, their

Address correspondence to Amna S. A. Zidan, Chemistry Department, Faculty of Sciences, Assiut University, Assiut 71516, Egypt. E-mail: amna@aun.edu.eg

FIGURE 1 Structures of the ligands.

flexibility, and their ability to coordinate in either neutral or deprotonated forms. ¹⁵

The chemistry study of the metal complexes that contain bidentate sulphur donor ligand was very interesting because it plays an important role in analytical and structural aspects of coordination chemistry. In continuance of our work on the coordination chemistry of dialkyldithiophosphates, 20,21 we describe here the synthesis and structural characterization of new types of mixed ligand complexes between bis(dialkyldithiophosphato)nickel(II) and thiosemicarbazide (Tsc), 2-acetylpyridinethiosemicarbazone (ApTsc), or furfuraldehydethiosemi-carbazone (FurTsc) (Figure 1).

EXPERIMENTAL

All the reagents viz., thiosemicarbazide, furfuraldehyde (Fluka) and 2-acetylpyrdine (Merck) are of analytical grade and were used as received. Bis(dialkyldithiophosphato)nickel(II)²² and the Schiff bases were prepared by the condensation of aldehyde or ketone with thiosemicarbazide in 1:1 molar ratio in absolute ethanol.²³

Physical Measurements

The electronic spectra (in DMF) were recorded on an UV-2101 PC Shimadzu spectrophotometer. The infrared spectra were recorded on a 470 Shimadzu infra-red spectrophotometer as KBr discs. The elemental

analyses data were obtained by Analytischer Funktions-test Vario El-Fab-Nr. 11982027 apparatus. JEOL-JMS $_{600}$ apparatus was used for recording the mass spectra. Thermal measurements were carried out on a 2000 Dupont thermal analyzer, the heating rate was 10 deg/min.

Synthesis of the Complexes

A hot ethanolic solution of either thiosemicarbazide (0.91 g, 0.01 mmol), 2-acetylpyrdinethiosemicarbazone (1.94 g, 0.01 mmol), or furfuraldehydethiosemicarbazone (1.78 g, 0.01 mmol) was added to a chloroform solution of 3.81 g (0.01 mmol), 4.26 g (0.01 mmol) or 4.83 (0.01 mmol) of bis(dimethyldithiophosphato), bis(diethyldithiophosphato)-, or dipropyldithiophosphato)nickel(II) respectively. The mixture was stirred for 2 h, where upon the color was changed from violet to green or yellow. The resulting solids were separated after two days, and then filtered, washed several times with diethyl ether, and air dried.

RESULTS AND DISCUSSION

The mixed ligand complexes may be formed according to the following equations:

$$[Ni\{(RO)_2PS_2\}_2] + Tsc \rightarrow [Ni\{(RO)_2PS_2\}_2Tsc]$$
 (1)

$$[Ni\{(RO)_2PS_2\}_2] + ApTsc \rightarrow [Ni\{(RO)_2PS_2\}_2ApTsc]$$
 (2)

$$[Ni\{(RO)_2PS_2\}_2] + HFurTsc \rightarrow [Ni\{(RO)_2PS_2\}FurTsc]$$

$$+(RO)_2PS_2H$$
 (3)

where $R = CH_3$ -, C_2H_5 - or C_3H_7 - and Tsc = thiosemicarbazide; ApTsc = 2-acetylpyridinethiosemicarbazone, HFurTsc = furfuraldehydethiosemicarbazone.

All the prepared complexes are stable in air and partially soluble in common organic solvents. Analyses of the complexes were presented in Table I. The analytical data are in a good agreement with the proposed stoichiometry of the complexes. The Tsc and ApTsc ligands coordinate with Ni(II) as a bidentate through the amino or azomethine nitrogen and sulphur atoms in a neutral form, respectively, HFurTsc, however coordinates as a mononegative ligand through the same donor atoms. The poor molar conductivity values of all complexes $(7–9~\Omega^{-1}\cdot cm^2\cdot mol^{-1})$ indicate that these complexes are nonelectrolytes.

TABLE I Physical, Characteristics and Analytical Data of the Complexes

			E	Elemental analysis found (Calc. %)			
No.	Compound	Color	C	Н	N	S	Dec. p $^{\circ}$ C
1	$[Ni\{(MeO)_2PS_2\}_2Tsc]$	Blue	12.95	3.70	9.08	34.55	320
2	$[Ni\{(EtO)_2PS_2\}_2Tsc]$	Blue	(12.93) 20.80 (20.78)	(3.69) 4.85 (4.84)	(9.05) 8.10 (8.08)	(34.53) 30.80 (30.81)	330
3	$[Ni\{(PropO)_2PS_2\}_2Tsc]$	Blue	27.10 (27.09)	5.76 (5.77)	7.30 (7.29)	27.78 (27.80)	335
4	$[Ni\{(MeO)_2PS_2\}_2ApTsc]$	Brown	25.38 (25.40)	3.90 (3.91)	9.90 (9.88)	28.28 (28.26)	350
5	$[Ni\{(EtO)_2PS_2\}_2ApTsc]$	Brown	30.85 (30.83)	4.86 (4.85)	9.00 (8.99)	25.72 (25.71)	365
6	$[Ni\{(PropO)_2PS_2\}_2ApTsc]$	Yellow	35.32 (35.35)	5.63 (5.64)	8.23 (8.25)	23.61 (23.59)	373
7	$[Ni\{(MeO)_2PS_2\}FurTsc \cdot \\ 2H_2O]$	Green	22.46 (22.49)	3.77 (3.78)	9.82 (9.84)	22.50 (22.52)	310
8	$[Ni\{(EtO)_2PS_2\}FurTsc \cdot 2H_2O]$	Green	26.43 (26.41)	4.45 (4.43)	9.26 (9.24)	21.17 (21.15)	315
9	$ \begin{aligned} &[\mathrm{Ni}\{(\mathrm{PropO})_2\mathrm{PS}_2\} \\ &\mathrm{FurTsc}\cdot 2\mathrm{H}_2\mathrm{O}] \end{aligned} $	Yellowish	29.83 (29.82)	5.02 (5.01)	8.62 (8.60)	19.93 (19.90)	315

 ${\bf Tsc} = {\bf Thiosemicarbazide.} \ {\bf ApTsc} = {\bf 2-Acetylpyridinethiosemicarbazone.} \ {\bf FurTsc} = {\bf Furfural dehydethiosemicarbazone anion.}$

IR Spectra

The characteristic frequencies of the two coordinated ligands in the mixed ligand complexes are listed in Table II and can be assigned as follows:

a) Two bands appearing in the regions 3290–3300 and 3090–3095 cm⁻¹ in the spectra of the complexes of the type [Ni{(RO)₂PS₂}₂Tsc] were attributed to the asymmetric and symmetric modes of the NH₂ group respectively. This band is reported at 3400 and 3100 cm⁻¹ in the Tsc ligand. This shift in frequency indicates the involvement of this group in coordination. A strong band at 810 cm⁻¹ in the ligand (Tsc) is mainly due to v(C=S) stretching frequency; this band is observed in the complexes around 780–800 cm⁻¹. It is expected that the strong band which appears in 1180–1190 cm⁻¹ for the mixed ligand complexes region has some contribution from the C=S stretching frequency; v(N=C=N) stretching vibration, These bands are shifted generally toward the lower frequency side in the spectra of

TABLE II IR Spectral Data of the Complexes (cm^{-1})

0) $v(NH_2)$, $v(NH)$, $v(H_2O)$ $v(C=N)$ $v(C=S)$ 3300, 3095 — 1190, 800 3290, 3090 — 1180, 780 3300, 3090 — 1190, 800 3380, 3180 1610 1180, 810 3380, 3175 1175, 3400 1615 — 3370, 3175, 3410 1615 — 3380, 3175, 3410		Alkyldith	lkyldithiophosphate moiety	noiety		Thiosemica	Thiosemicarbazone moiety	ty		
530 1000 3300, 3095 — 1190, 800 540 1010 3290, 3090 — 1180, 780 530 1020 3300, 3090 — 1190, 800 540 970 3380, 3180 1610 1180, 810 550 1010 3380, 3175 1610 1170, 830 540 1015 3380, 3180 1605 1180, 810 550 990 3375, 3175, 3400 1615 — 560 990 33870, 3170, 3420 1610 — 560 990 33877, 3175, 3410 1615 —	No.	$v(P-S)_{(asy)}$		v(P-0)	$v(\mathrm{NH}_2),\ v(\mathrm{NH}),\ v(\mathrm{H}_2\mathrm{O})$	$v(\mathbf{C} = \mathbf{N})$	v(C=S)	v(C—S) M—N	M—N	M—S
540 1010 3290, 3090 — 1180, 780 530 1020 3300, 3090 — 1190, 800 540 970 3380, 3180 1610 1180, 810 550 1010 3380, 3175 1610 1170, 830 540 1015 3380, 3180 1605 1180, 810 530 990 3375, 3175, 3400 1615 — 550 985 3370, 3170, 3420 1610 — 560 990 3380, 3175, 3410 1615 —	1	640	530	1000	3300, 3095	I	1190, 800	-	430	200
530 1020 3300, 3090 — 1190, 800 540 970 3380, 3180 1610 1180, 810 550 1010 3380, 3175 1610 1170, 830 540 1015 3380, 3180 1605 1180, 810 530 990 3375, 3175, 3400 1615 — 550 985 3370, 3170, 3420 1610 — 560 990 3387, 3176, 3420 1610 —	87	099	540	1010	3290, 3090	1	1180,780		420	495
540 970 3380, 3180 1610 1180, 810 550 1010 3380, 3175 1610 1170, 830 540 1015 3380, 3180 1605 1180, 810 530 990 3375, 3175, 3400 1615 — 550 985 3370, 3170, 3420 1610 — 560 990 3380, 3175, 3410 1615 —	က	099	530	1020	3300, 3090	I	1190,800	I	435	505
550 1010 3380, 3175 1610 1170, 830 540 1015 3380, 3180 1605 1180, 810 530 990 3375, 3175, 3400 1615 — 550 985 3370, 3170, 3420 1610 — 560 990 3380, 3175, 3410 1615 —	4	665	540	970	3380, 3180	1610	1180,810	I	430	490
540 1015 3380, 3180 1605 1180, 810 530 990 3375, 3175, 3400 1615 — 550 985 3370, 3170, 3420 1610 — 560 990 3380, 3175, 3410 1615 —	10	670	550	1010	3380, 3175	1610	1170,830	I	425	510
530 990 3375, 3175, 3400 1615 — 550 985 3370, 3170, 3420 1610 — 560 990 3380 3175, 3410 1615 —	9	650	540	1015	3380, 3180	1605	1180,810	I	440	200
550 985 3370, 3170, 3420 1610 — 560 990 3380 3175 3410 1615 —	7	670	530	066	3375, 3175, 3400	1615	1	1020	435	490
560 990 3380 3175 3410 1615 —	∞	670	550	985	3370, 3170, 3420	1610	1	1015	440	485
	6	089	260	066	3380, 3175, 3410	1615	I	1015	440	495

the complexes, (related to Tsc) indicating that the coordination is taking place through the ketonic sulphur atom.

- b) The IR spectrum of the 2-acetylpyridinethiosemicarbazone (ApTsc) ligand exhibits some bands at 3380, 3180, 1200 and 830 cm⁻¹ which are attributed to $v(\mathrm{NH_2})$, $v(\mathrm{NH})$ and $v(\mathrm{C=S})$, respectively, 24,25 in the thion form (Figure 1). The same bands were observed in the regions, 3380, 3175–3180, 1170–1180 and 810–820 cm⁻¹ in the complexes of the type [Ni{(RO)₂PS₂}₂ApTsc]. This clearly indicates the non-involvement of the NH₂ group in coordination. However, the azomethine and C=S groups participate in this coordination. Moreover, a strong band at 1650 cm⁻¹ in the spectrum of the ligand is assigned to $v(\mathrm{C=N})$. This band shifts to a lower frequency by 40–45 cm⁻¹. This shift to lower frequency indicates the involvement of the azomethine nitrogen in bonding to the metal ion. Thus, the ligand acts as a neutral bidentate NS donor. He is a strong land acts as a neutral bidentate NS donor.
- c) The complexes of the type $[Ni\{(RO)_2PS_2\}FurTsc\cdot 2H_2O]$ exhibit $\upsilon(OH)$ and $\rho(H_2O)$ bands in the 3400–3420 and 680–690 cm $^{-1}$ regions which are indicative of coordinated water in the complexes. 31,32

Neither the ligand HFrTsc nor its complexes show absorption bands between 2000 and 2500 cm⁻¹, suggesting that no S–H bonding. The spectrum of the ligand exhibits bands at 3360, 3200 and 830 cm⁻¹ which were attributed to $v(\mathrm{NH_2})$, $v(\mathrm{NH})$ and $v(\mathrm{C=S})$, 24,25 respectively. In the complexes, $v(\mathrm{NH})$ and $v(\mathrm{C=S})$ disappear and accompanied by the appearance of $v(\mathrm{C-S})$ at 1015–1020 cm^{-1.33,34} Thus, indicates that the ligand undergoes there in enol form which deprotonated on complexation and coordinates through the thiolate sulphur as anion. Further, in the ligand spectrum, the strong band observed at 1600 cm⁻¹ can be assigned to $v(\mathrm{C=N})$ frequencies. This shifts to higher frequency region 1610–1615 cm⁻¹ in the spectra of the complexes, indicating coordination of nitrogen of the azomethine group to the metal ion. 35,36

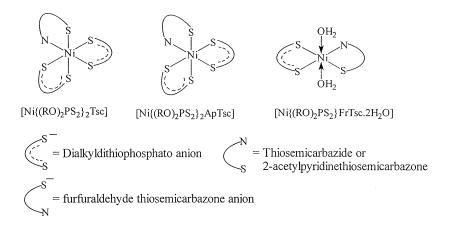
Moreover, all complexes show strong two bands in the two regions 985–1020 and 640–680 cm⁻¹, which are assigned to $\nu(P-O)$ and $\nu(P-S)$, respectively, 20,21,37 in the dithiophosphate group.

The important features of the infrared spectra of all the complexes are the appearance of two strong bands at 420–440 cm $^{-1}$ and 485–510 cm $^{-1}$, which may be assigned to $\upsilon(M-N)$ and $\upsilon(M-S)$ bands respectively. 37,39

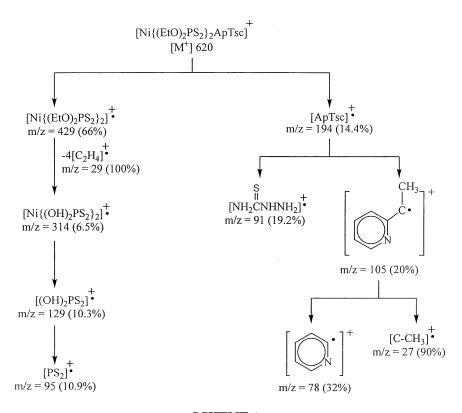
Electronic Spectra

The electronic spectra of the complexes display two bands at 14,663–16,779 and 19,342–21,413 cm⁻¹ regions (Table III). These spectral

No.	d-d Transition	Intraligand and charge transfer bands
1	16,779; 21,008	33,333; 41,667; 48,077
2	16,556; 21,413	33,671; 38,462; 48,309
3	16,393; 20,964	33,670; 41,841; 46,729
4	14,837; 19,417	31,153; 49,261
5	14,663; 19,417	31,348; 43,103; 49,020
6	14,749; 19,342	31,250; 43,290; 46,729
7	15,015; 20,576	31,153; 43,478; 48,780
8	15,038; 20,661	32,895; 49,020
9	15,054; 20,618	31,153; 46,729

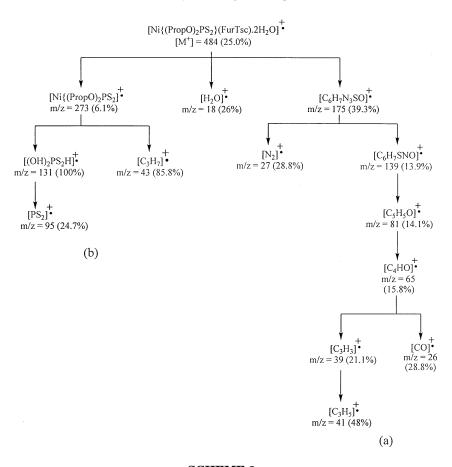

TABLE III Electronic Spectral Bands for the Complexes in (cm⁻¹)

bands may be assigned to ${}^3A_{2g} \rightarrow {}^3T_{1g}$ (F) (υ_2) and ${}^3A_{2g} \rightarrow {}^3T_{1g}$ (P) (υ_3) transitions, respectively, and supports the octahedral structure for the complexes. The second type of bands which appear in the range 31,153–33,671 cm⁻¹ are assigned to π - π^* transition of azomethine chromophores³⁸. Bands appearing in the region 41,667–49,261 cm⁻¹ are assigned to π - π^* transition³⁹ of the different moieties of thiosemicarbazone ligands.³⁹


From the forgoining data we suggest the structures for the complexes (Figure 2).

Mass Spectra

The mass spectrum of $[Ni\{EtO)_2PS_2\}_2ApTsc]$ complex shows the molecular ion peak at m/z = 620 $[M]^+$. The mass spectral fragmentation of


FIGURE 2 Suggested structures of the complexes.

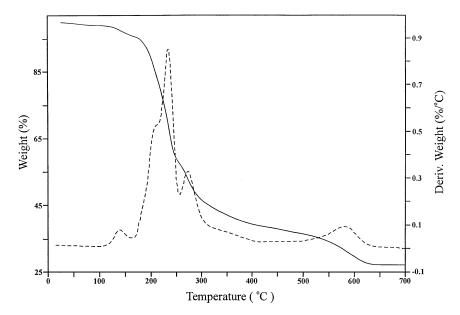
SCHEME 1

this complex is recorded in Scheme 1. The molecular cation during fragmentation process loses the 2-acetylpyridinethiosemicarbazone ligand under FAB conditions to give species such as 429 [Ni{(EtO₂)₂PS₂}₂]^{\pm}; 314 [Ni{(OH)₂PS₂}₂]^{\pm}; 129 [(OH)₂PS₂]^{\pm} and 95 [PS₂]^{\pm 21 after elimination of [CH₂=CH₂]^{\pm 2 and nickel atom. Moreover, the fragments of 2-acetypyridinethiosemicarbazone are 91 [CH₃N₃S]^{\pm}; 105 [C₇H₇N]^{\pm}; 78 [C₅H₅N]^{\pm 2 and 27 [C₂H₃]^{\pm 3 which observed in the literature.²¹}}}}

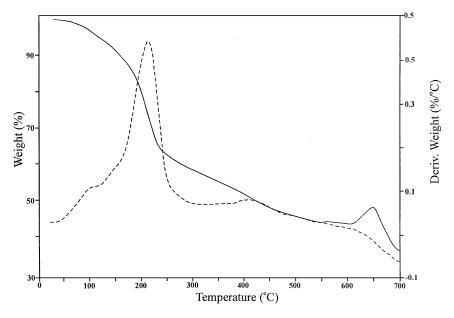
The mass spectral fragmentation pattern of $[Ni\{(PropO)_2PS_2\}$ -FurTsc $\cdot 2H_2O]^{\ddagger}$ is depicted in Scheme 2. One branch (a) of this scheme represents a series of fragments, corresponding to fragmentation of furfuraldehyde thiosemicarbazone, which loses a $[N_2]^{\ddagger}$ m/z = 27 forming the species 139 $[C_6H_7SNO]^{\ddagger}$; 81 $[C_5H_5O]^{\ddagger}$; 65 $[C_4HO]^{\ddagger}$; 26 $[CO]^{\ddagger}$; 39 $[C_3H_3]$ which may be take two hydrogen radicals forming $[C_3H_5]^{\ddagger}$ with m/z = 41. The other branch (b) includes the fragments $[C_3H_7]^{\ddagger}$ with m/z = 43 and $[(OH)_2PS_2H]^{\ddagger}$ with m/z = 131 (100%) which forms $[PS_2]^{\ddagger}$ radical m/z = 95.

SCHEME 2

Thermal Data of the Complexes


Thermogravimetric studies were carried out on a number of the prepared complexes. The data of these studies are presented in Table IV from the TG-DTG curves. The thermal behavior of the complexes is described as follows:

i) The TGA thermograms of the type $[Ni\{(RO)_2PS_2\}_2Tsc]$ consist of number of stages. The first mass loss of the complex $[Ni\{CH_3O)_2PS_2\}_2Tsc]$ occurs at 248°C which agrees with elimination of Tsc molecule (found 20.3%, calc. 19.4), while this step was showed at 198°C for $[Ni\{(EtO)_2PS_2\}_2Tsc]$ and the mass loss correspond to evolution of $Tsc + CH_2 = CH_2$ molecules


TABLE IV TG and DTG Data of the Complexes

Compound	Step	Temp. range	Max. temp. °C	Mass loss % % (calc.)
$Ni\{(MeO)_2PS_2\}_2Tsc$	First	0-250	248	20.2 (19.4)
	Second	350 - 580	426	33.8
	residue	_	687	39.8 (39.7)
$[Ni\{(EtO)_2PS_2\}_2Tsc]$	First	0-240	198	21.7(23.0)
/-	Second	250 - 300	277	5.2(5.4)
	Third	300-350	324	13.3
	residue	_	660	30.1 (30.8)
$[Ni\{(PropO)_2PS_2\}_2Tsc]$	First	0-17	139	4.3
	Second	175 - 265	233	38.1
	Third	265 - 450	274	19.6
	residue	_	580	28.4(27.4)
$[Ni\{(EtO)_2PS_2\}_2ApTsc]$	First	30-240	179	17.9
/	Second	240 - 390	265	20.6
	residue	_	680	28.3(27.2)
$[Ni\{(MeO)_2PS_2\}_2ApTsc]$	First	30 - 250	215	29.8
	Second residue	250–310	259	11.6
$[Ni\{(MeO)_2PS_2\}FrTsc \cdot 2H_2O]$	First	90 - 150	131	12.3
	Second	150-275	207	26.4
	residue		700	36.8 (36.1)
$[Ni\{(EtO)_2PS_2\}FrTsc\cdot 2H_2O]$	First	0 - 325	207	42.5
	Second	325 - 550	429	16.5
	residue		666	34.9 (34.8)
$[Ni\{(PropO)_2PS_2\}FrTsc \cdot 2H_2O]$	First	0-230	200	23.6
·	Second	230-270	233	19.4
	residue	_	700	$31.7\ (31.9)$

- (found 21.7%, calc. 23.0%). The thermal behavior of the complex $[Ni\{(PropO)_2PS_2\}_2Tsc]$ (Figure 3) exhibits a number of peaks in (DTG) at 139, 233, 274, and 580°C, unfortunately it was difficult to identify the mass loss of each step. The final product of all the compounds is NiSO₄.
- ii) The first mass loss of the two complexes $[Ni\{(MeO)_2PS_2\}_2ApTsc]$ and $[Ni\{(EtO)_2PS_2\}_2ApTsc]$ is in agreement with the elimination of $C_7H_7N]$ from the first complex (found 17.9%, calc. 18.4%) and ApTsc molecule from the second compound (found 31.20%, calc. 29.8%). The unstable complex in each case decomposes and form NiSO₄ as a final product.
- iii) The first and second steps of TG and DTG thermograms of the two complexes $[Ni\{(EtO)_2PS_2\}(FrTsc)\cdot 2H_2O]$ (Figure 4) and $[Ni\{(PropO)_2PS_2\}$ (FrTsc) $\cdot 2H_2O]$ are composite at 207, 409°C and 200, 233°C respectively. It corresponds to the mass loss of

FIGURE 3 TG (——) and DTG (- - -) thermograms of [Ni $\{(PropO)_2PS_2\}_2$ Tsc].

FIGURE 4 TG (——) and DTG (- - -) thermograms of [Ni{(EtO)}_2PS_2}_2FurTsc \cdot 2H2O].

		Fungi	Bacteria				
Compound	A. Fumig. var. albus	A. niger	C. tropicum	F. oxysporium	B. cereus	St.	P. aeruginosa
$\overline{[Ni\{(EtO)_2PS_2\}_2Tsc]}$	8	_	_	_	12	10	
$[Ni\{(EtO)_2PS_2\}_2ApTsc]$	15	15	15	20	22	0	10
$ \begin{aligned} &[\text{Ni}\{(\text{EtO})_2\text{PS}_2\} \\ & \text{FurTsc} \cdot 2\text{H}_2\text{O}] \end{aligned} $	12	10	12	10	13	15	17
Erythromycine	0	0	0	0	0	0	0

TABLE V Antimicrobial Data for Some Complexes

The diameter of the inhibition zone (in mm).

FurTsc+ $2H_2O+2C_2H_4$ (found 59.03, calc. 58.68) in the first compound. For the second compound, the mass losses is a good agreement with elimination of (FurTsc+ $2H_2O$) (found 43.0, calc. 43.8%). Elimination of alkenes from alkylthiophosphate was recorded in literature. Three DTG peaks at 131, 207, and $700^{\circ}C$ are observed in the thermogram of [Ni{(MeO)₂PS₂}FurTsc \cdot 2H₂O] compound and we can not identify the mass losses of each step. The final product of all complexes of this type is NiSO₄.

ANTIMICROBIAL ACTIVITY

Representative complexes were screened for their antibacterial activity against different three species of bacteria, gram positive Bacillus cereus, gram positive St. aureas and P. aeruginosa, and four species of fungi, A. fumig. var. allous, A. niger, C. tropicum, and F. oxysporium using the filter paper technique⁴⁰ measuring the zone of inhibition in mm at $500~\mu g \cdot ml^{-1}$ concentration. The screening results are summarized in Table V and indicate that among of the tested compounds $[Ni\{(EtO)_2PS_2\}_2ApTsc]$ showed good growth inhibition against all the bacteria and fungi. This may be attributed to the pyridyl ring of 2-acetyl pyridine. Moreover, it shows a high degree of activity if compared with the related complexes (2-acetyl) pyridinesemicarbazone) may be due to sulphur atom in this type of the complexes.

REFERENCES

- [1] M. J. M. Campbell, Coord. Chem. Rev., 15, 279 (1975).
- [2] D. X. West, S. B. Padhye, and P. B. Sopawane, Structure and Bonding (Springer, Berlin, 1991), vol. 76, p. 1.
- [3] S. Padhye and G. B. Kauffman, Coord. Chem. Rev., 63, 127 (1985).
- [4] T. I. Malinovskii, Yu. A. Simonov, N. V. Gerbeleu, et al., Problemi Kristallokhimii (Nauka, Moskva, 1985), p. 3.

- [5] Y. Kang, N. Yang, S. O. Kang, and J. Ko, Organometallics, 16, 5522 (1997).
- [6] D. X. West, J. K. Swearingen, J. V. Martinez, et al., Polyhedron, 18, 2919 (1999).
- [7] P. Tarasconi, S. Capacchi, G. Pelosi, et al., Bioorgan. Med. Chem., 8, 157 (2000).
- [8] L. J. Ackerman, P. E. Franwick, M. A. Green, et al., Polyhedron, 18, 2759 (1999).
- [9] S. Teoh, S. Ang, H. Fun, and C. Ong, J. Organomet. Chem., 17, 580 (1999).
- [10] E. Bermejo, R. Carballo, A. Castineiras, et al., Polyhedron, 18, 3695 (1999).
- [11] S. Abram, C. M. Mssmer, and U. Abram, Polyhedron, 17, 131 (1998).
- [12] D. R. Williams, Chem. Rev., 72, 203 (1972).
- [13] A. Furst and R. T. Haro, Progr. Exp. Tumor Res., 12, 102 (1969).
- [14] F. P. Dwyer, E. M. F. Roe, and A. Shulman, Brit. J. Cancer, 19, 195 (1965).
- [15] S. Chandra, L. Gupta, and V. P. Tyagi, Synth. React. Inorg. Met-Org. Chem., 26, 125 (1996).
- [16] R. C. Olivares, R. A. Toscano, C. Silvestru, et al., J. Organomet. Chem., 493, 61 (1995).
- [17] A. I. El-Said, A. S. A. Zidan, M. S. El-Meligy, A. A. M. Ali, and O. F. Mohammed, Transition Met. Chem., 26, 13 (2001).
- [18] D. B. Sowerby, I. Haiduc, A. B. Rusu, and M. Salajan, *Inorg. Chim. Acta*, 68, 87 (1983).
- [19] C. Silvestu, M. Curtui, I. Haiduc, M. J. Begley, and D. B. Sowerby, J. Organomet. Chem., 426, 49 (1992).
- [20] A. A. M. Aly, M. S. El-Meligy, A. S. A. Zidan, and M. El-Shabasy, Synth. React. Inorg. Met-Org. Chem., 17(3), 257–274 (1987).
- [21] A. S. A. Zidan, Phosphours, Sulphur and Silicon, 178, 1–15 (2003).
- [22] K. A. Rufenacht, Chim. Acta, 51, 518 (1968).
- [23] H. L. Singh, M. Sharma, and A. K. Varshney, Synth. React. Inorg. Met-Org. Chem., 29(5), 817–826 (1999).
- [24] N. K. Singh and R. Tripathi, Transition Met. Chem., 13, 346 (1988).
- [25] K. M. Ibrahim and M. M. Bekkeit, Transition Met. Chem., 13, 230 (1988).
- [26] A. A. El-Asmy, Y. M. Shaibi, I. M. Shedaiwa, and M. A. Khattab, Synth. React. Inorg. Met-Org. Chem., 20, 461 (1990).
- [27] G. R. Burns, Inorg. Chem., 7, 277 (1968).
- [28] S. Chendra and K. K. Sharma, Synth. React. Inorg. Met-Org. Chem., 12, 123 (1982).
- [29] D. X. West, R. M. Makeever, J. P. Scevill, and D. L. Klayman, *Polyhedron*, 3, 947 (1984).
- [30] C. K. Alphonsa and M. R. P. Kurup, Synth. React. Inorg. Met-Org. Chem., 29, 805–815 (1999).
- [31] M. E. Khalifa, T. H. Rakha, and M. M. Bekheit, Synth. React. Inorg. Met-Org. Chem., 26, 1149 (1996).
- [32] A. A. El-Asmy, H. E. Mabrouk, T. Y. Al-Ansi, R. R. Amin, and M. F. El-Shahat, Synth. React. Inorg. Met-Org. Chem., 23, 1709 (1993).
- [33] S. H. Abo El-Fetoh, A. E. Eid, A. I. Abo El-Kareem, and M. A. Wassel, Synth. React. Inorg. Met-Org. Chem., 30, 513–532 (2000).
- [34] B. T. Khan and S. M. Zakeeruddin, Transition Met. Chem., 16, 119 (1991).
- [35] P. Bindu, M. P. Kurup, and T. Satyakeerty, Polyhedron, 18, 321 (1999).
- [36] J. El-Mostapha, R. Amedee, A. Magali, K. A. Mustayeen, and B. M. Gilles, *Polyhedron*, 20, 67 (2001).
- [37] H. W. Roesky, Z. Naturforsch, 23b, 103 (1968).
- [38] S. Chandra and R. Singh, Synth. React. Inorg. Met-Org. Chem., 17, 869 (1987).
- [39] K. Balakrishman and K. K. Aravindakshan, J. Indian Chem. Soc., 65, 187 (1991).
- [40] N. Kalyoncuoglu, S. Rollas, D. Sur-Attiner, Y. Yegenoglu, and O. Ang, *Pharmazie*, 47, 769 (1992).